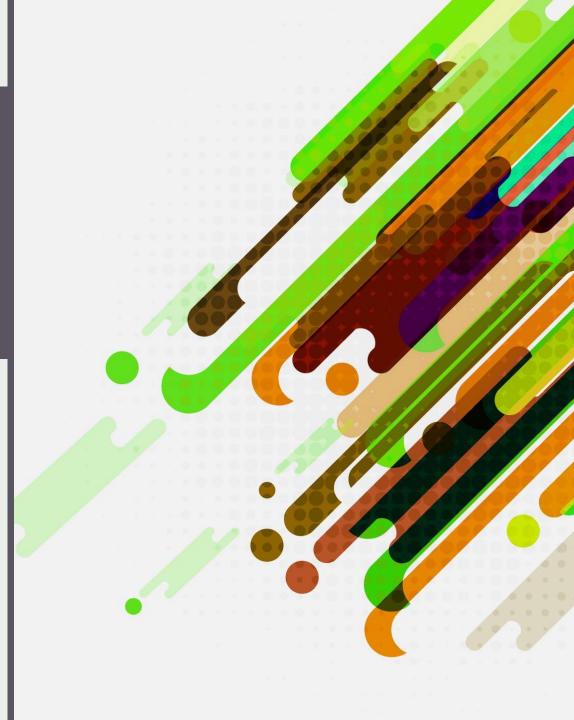

CS364174

"I got up at 5:30 once and caught a worm — it wasn't worth it, believe me."

The early bird ate too many worms and died

Log in to Poll Everywhere

To present live activities, please log in to your Poll Everywhere account in a separate window.


Launch log-in window

COMMON GENETIC DISORDERS FOR THAI INTERNISTS

Prasit Phowthongkum

MD FMRCPT DABIM

Cert Medical Genetics Thai

Disclosure

Medical Genetics Consultant: KCMH, Rama Hosp, BH, BNH, MPKH, PYT1 Hosp

Laboratory Genetics Consultant: Grace Sciences, Genforch, Precision Health, Excellence Center for Genomics and Precision Medicine (KCMH)

Honorarium and Travel Grant: Takeda, Roche, Sanofi, Pfizer

Member of Thai Society of Human Genetics and Thai Association of Medical Genetics and Genomics

Common Genetic Disorders for Thai Internists

Genetic Diseases Classification

Prevalence of Genetic Diseases

Adult-onset genetic diseases

Top Five Genetic Diseases That Thai Internists Must Know

Glucose-6-Phosphate Dehydrogenase Deficiency (X-linked)

- Familial Hypercholesterolemia (Autosomal Dominant)
- Hypertrophic Cardiomyopathy (Autosomal Dominant)
- Thalassemia and Hemoglobinopathies (Autosomal Recessive)
- Hereditary Breast-Ovarian Cancer Syndrome (Autosomal Dominant)

Genetic Disorders Classification

- 1. Monogenic (Mendelian, Mitochondrial, Imprinting)
- 2. Microdeletion/Microduplication and Chromosomal Rearrangement Disorders (Contiguous Genes Syndrome, Genomic Disorders)
- 3. Chromosomal Disorders (Aneuploidy, Polyploidy mosaicism, segmental)
- 4. Multifactorial Disorders (Complex Inheritance)

Prevalence of Genetic Diseases

1. Monogenic Disorders:	1/300
-------------------------	-------

2. Genomics Disorders: 1/200

3. Chromosomal Disorders 1/500

4. Complex Inheritance Disorders 1/20

6% of population

Estimation of Rare DiseasesPrevalence

Rare diseases affect about 300 million people globally

80% of rare diseases are genetic disorders

Genetic diseases with known causative genes are more than 6,000 disorders

HEREDITARY BREAST-OVARIAN CANCER SYNDROME

Hereditary Breast-Ovarian Cancer Syndrome

- Most commonly caused by the pathogenic/likely pathogenic variants in BRCA1 or BRCA2 genes.
- When to suspect: A SPecial FROG
 - A Age < 40 years old
 - S Site: bilateral or multifocal
 - P Pathology: Triple Negative -> BRCA1
 - F Family history
 - R Race: Ashkenazi Jewish Ancestry
 - O Other Cancers: high grade serous ovarian cancers, prostate cancer, pancreatic cancer, melanoma
 - G Gender: male breast cancer

Molecular Genetic Testing

_	Proportion of <i>BRCA1</i> - & <i>BRCA2</i> -Associated HBOC Attributed to Pathogenic Variants in Gene	Proportion of Pathogenic Variants ² Detected by Method		
		Sequence analysis ³	Gene-targeted <u>deletion/duplication</u> <u>analysis</u> 4	
BRCA1	66%	87%-89% ⁵	11%-13% 5	
BRCA2	34%	97%-98% ⁵	2%-3% 5	

Differential Diagnosis

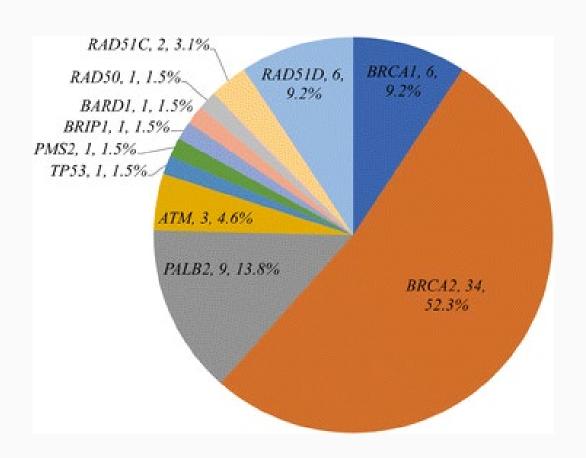
High-penetrance (high-risk) genes for breast cancer			
CDH1	Hereditary diffuse gastric cancer	AD	Breast cancer (lobular), diffuse gastric cancer. Majority of cancers occur before age 40 yrs.
PALB2	PALB2-related cancer susceptibility (OMIM 610355)	AD	Breast cancer <58%, ¹ ovarian cancer, male breast cancer, pancreatic cancer
PTEN	PTEN hamartoma tumor syndrome	AD	Breast cancer. Other cancers: thyroid, renal cell carcinoma, endometrial, colorectal. Multiple hamartomas, macrocephaly, trichilemmomas, papillomatous papules. Affected persons usually present by late 20s.
STK11	Peutz-Jeghers syndrome	AD	Breast cancer. Other cancers: GI, ovarian (mostly SCTAT), cervical (adenoma malignum), pancreatic, Sertoli cell testicular. GI polyposis, mucocutaneous pigmentation, hyperpigmented macules on fingers.
TP53	Li-Fraumeni syndrome	AD	Breast cancer (often premenopausal). Other cancers: soft tissue sarcoma, osteosarcoma, brain, adrenocortical carcinoma, leukemias. Early-onset & multiple primary cancers.

Differential Diagnosis

Moderate-penetrance (moderate-risk) genes for breast &/or ovarian cancer			
ATM	ATM-related cancer susceptibility (ATM heterozygotes; see Ataxia-Telangiectasia.)	AD	Breast cancer
BARD1	BARD1-related cancer susceptibility (OMIM 114480)	AD	Breast cancer
BRIP1	BRIP1-related cancer susceptibility (OMIM 605882)	AD	Epithelial ovarian cancer, ² possible ↑ risk for breast cancer
CHEK2	CHEK2-related cancer susceptibility (OMIM 604373)	AD	Breast cancer ³

Differential Diagnosis

	NF1 v	Finnish women	
Age group	Risk (%)	95% CI	Risk (%)
20–29	0.55	0.00–1.62	0.03
30–39	4.74	1.48–7.89	0.34
40–49	3.92	0.77–6.96	1.50
50–59ª	5.89	1.86–9.76	2.64
60–69ª	4.18	0.09–8.11	2.88
70–79	3.99	0.00–9.26	2.44


Abbreviations: CI = confidence interval; NF1 = neurofibromatosis 1.

^aWomen aged 50–69 years are routinely invited to mammography screening in Finland.

Distribution of Susceptibility Genes

Testing Strategies

Targeted Testing: Ashkenazi Jewish >99%

•BRCA1 c.68_69delAG (BIC: 185delAG)

•BRCA1 c.5266dupC (BIC: 5382insC), and

•BRCA2 c.5946delT (BIC: 6174delT)

•No hotspot mutations in Thai or other populations at this degree

Testing Strategies

BRCA1/BRCA2 Panel

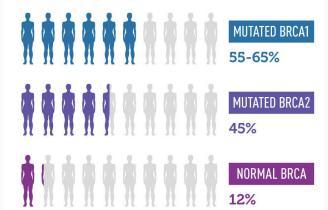
Deletion/Duplication Analysis – lowest available 100 USD

Multi Gene Panel

Deletion / Duplication Analysis 300 USD

Exome Sequencing Research Only - Commercially available at

250 USD


Genome Sequencing Research Only - Commercially available at?

Risk of Cancer

Concest True	General Population	Risk for Malignancy ¹		
Cancer Type	Risk	BRCA1	BRCA2	
Breast	12%	55%-72% by age 70	45%-69%	
Contralateral breast cancer	2% w/in 5 yrs	20%-30% w/in 10 yrs; 40%-50% w/in 20 yrs		
Ovarian	1%-2%	39%-44%	11%-17%	
Male breast	0.1%	1%-2%	6%-8%	
Prostate	6% by age 69 yrs	21% by age 75 yrs; 29% by age 85 yrs	27% by age 75 yrs; 60% by age 85 yrs	
Pancreatic	0.5%	1%-3%	3%-5% by age 70 yrs	
Melanoma (cutaneous & ocular)	1.6%		Elevated risk	

NATIONAL CANCER INSTITUTE CHANCES OF DEVELOPING BREAST CANCER BY AGE 70

Specific inherited mutations in the BRCA1 and BRCA2 genes increase the risk of breast and ovarian cancers. Testing for these mutations is usually recommended in women without breast cancer only when the person's individual or family history suggests the possible presence of a harmful mutation in BRCA1 or BRCA2. Testing is often recommended in younger women newly diagnosed with breast cancer because it can influence treatment decisions and have implications for their family members.

www.cancer.gov/brca-fact-sheet

Prevalence

Estimated to be 1/500 of general population

Estimated to be 1/10 of breast cancer patient

Estimated to be 1/3 of having known risk for genetic predispose

Management

System/Concern	Evaluation	Frequency
	Breast self-exam	Monthly
	Clinical breast exam	Every 6-12 mos beginning at age 25 yrs
Breast cancer	Mammogram	Annually beginning at age 30 yrs
	Breast MRI	Annually beginning at age 25 yrs or earlier if breast cancer was diagnosed in family member < age 30 yrs
Ovarian cancer	Screening not recommended ¹	
Melanoma	Skin exam w/dermatologist	Individualized based on family history
Pancreatic cancer	In asymptomatic persons who meet criteria based on mutation status & family history, contrast-enhanced MRI/MRCP &/or EUS may be considered in a research setting to better delineate the risks & benefits of pancreatic cancer screening.	

Management

Consider prophylactic mastectomy: does not decrease all cause mortality, but decrease breast cancer incidence by 90%

Recommend prophylactic bilateral salpingo-oophorectomy at 35 years old -> monthly operation at KCMH -> will become the most common cause of surgical menopause, decrease all cause mortality

Management

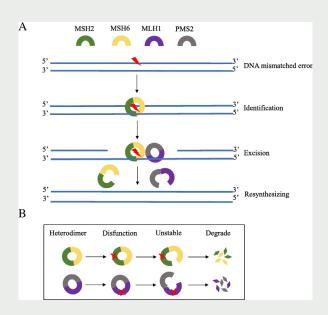
- Breast Cancer
- Recommend bilateral mastectomy
- PARP inhibitor
 - Early, high risk , HER2 negative BRCA1 or BRCA2 breast cancer as adjuvant therapy
 - Locally advanced metastatic BRCA1 or BRCA2 as single therapy
- Ovarian Cancer
- PARP inhibitor for maintenance therapy in advanced ovarian/fallopian tube/primary peritoneal cancer

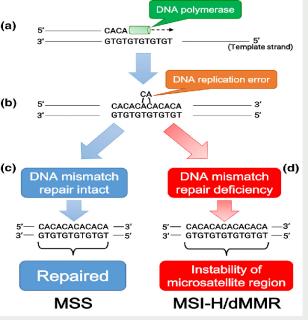
Lynch syndrome

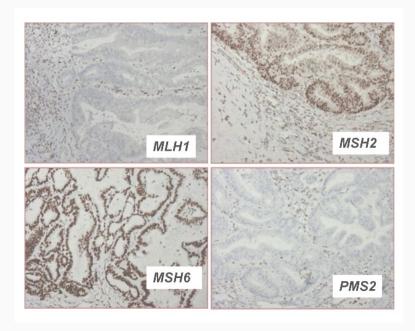
Hereditary Non Polyposis Colorectal Cancer Syndrome (HNPCC)

Amsterdam's criteria
Bethesda criteria

PREMM(126) Score


Most common cause of hereditary colon cancer: 3% of all colon cancer


Hallmark: microsatellite Instability


Mismatch repair genes: MLH1, PMS2, MSH2, MSH6

Life Time Risk of colon cancer: 70%

Other lynch associated cancers: endometrial cancer, stomach cancer, ovarian cancer, sebaceous carcinomas, keratoacanthomas

The Clinical Spectrum of EPCAM Mutations

Differential diagnoses for Lynch syndrome include:

Attenuated familial adenomatous polyposis (APC)

MUTYH-associated polyposis syndrome (MUTYH)

Cowden disease (PTEN)

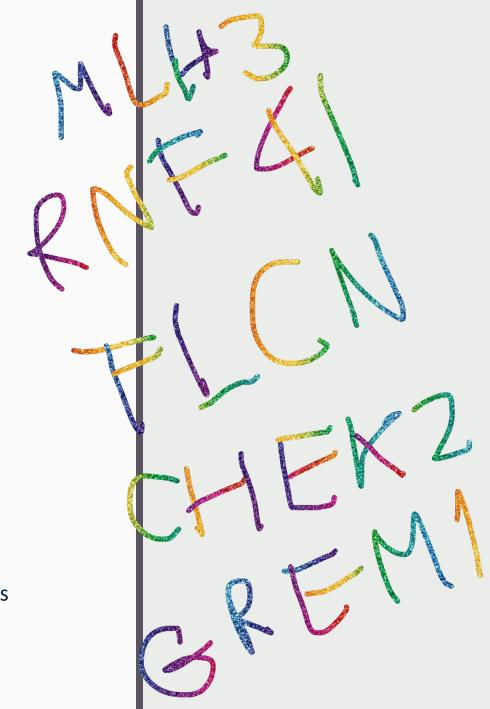
Cronkite-Canada syndrome

Familial adenomatous polyposis (APS)

Familial clustering of late-onset colorectal neoplasms

Hyperplastic polyps

Juvenile polyposis syndrome (BMPR1A, SMAQ4)


Lymphomatous polyposis

Muir-Torre syndrome

Nodular lymphoid hyperplasia

POLE, POLD polymerase proofreading associated polyposis

Peutljegher syndrome (STK11)

Cancer risks by gene by 70 years

G. 1. 2. 6. P2. EP

Colorectum. 2.50, 45, 25, 3, 75

Endometrium. 1. 35. 46. 41. 13. 12

Ovary. 1. 11. 17. 11. 3

Stomach. 1. 12.(13) 7.

Prostate. 4. 7. 16, 5. 5

Ureter/Kidney. 1. 3. 14. 3. 4

Lynch syndrome Screening and management Colonoscopy begin 25 or 5 yrs before earliest every 1-2 years

Endometrial biopsy begin 35 yrs every 1-2 years

Stomach begin 40 yrs (with FH or Asian)

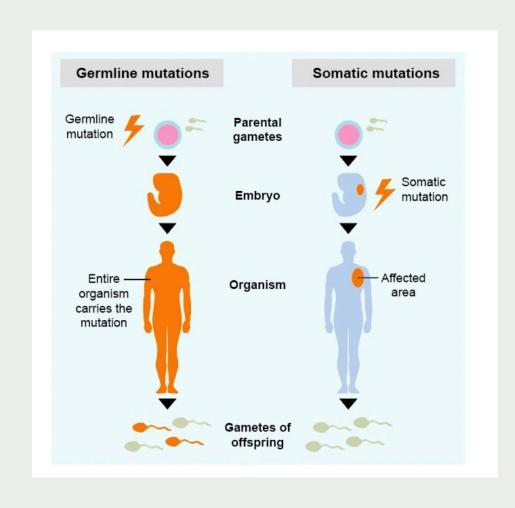
Pancreatic begin 50 yrs (with FH): ?,?

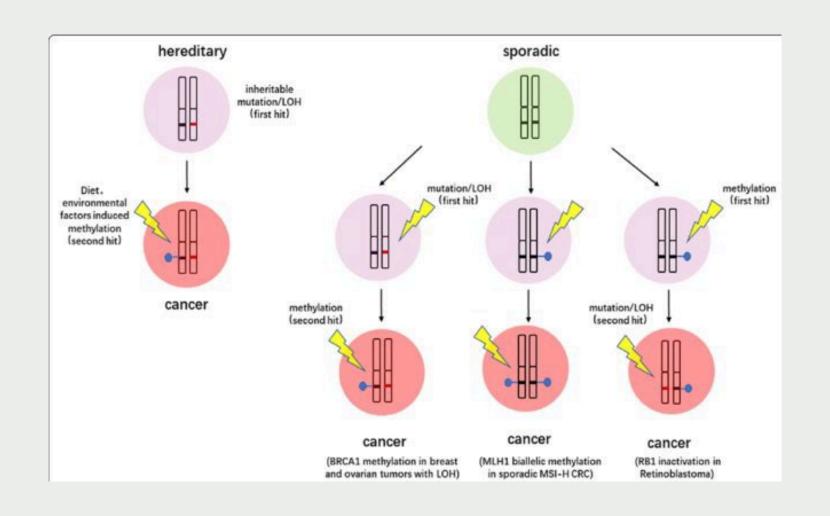
Urinary tract begin 30 yrs (with FH)

Ovary ????????????

Lynch syndrome

Prevalence 1/279


MLH1 1/1946


MSH2 1/2841

MSH6 1/758

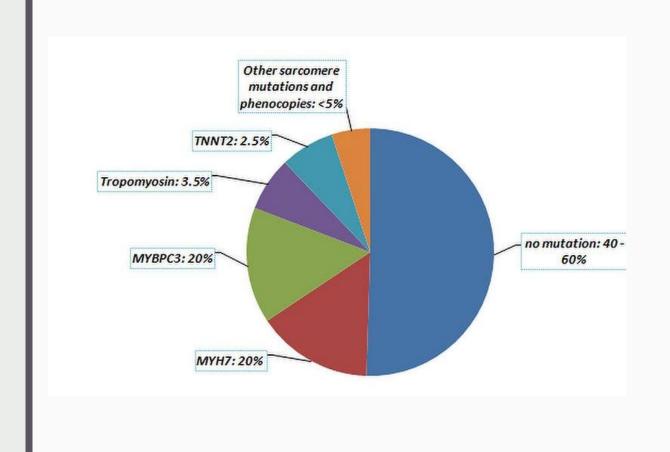
PMS2 1/714

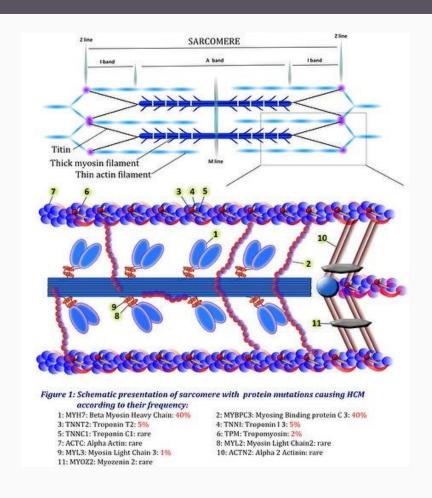
Rare EPM deletion

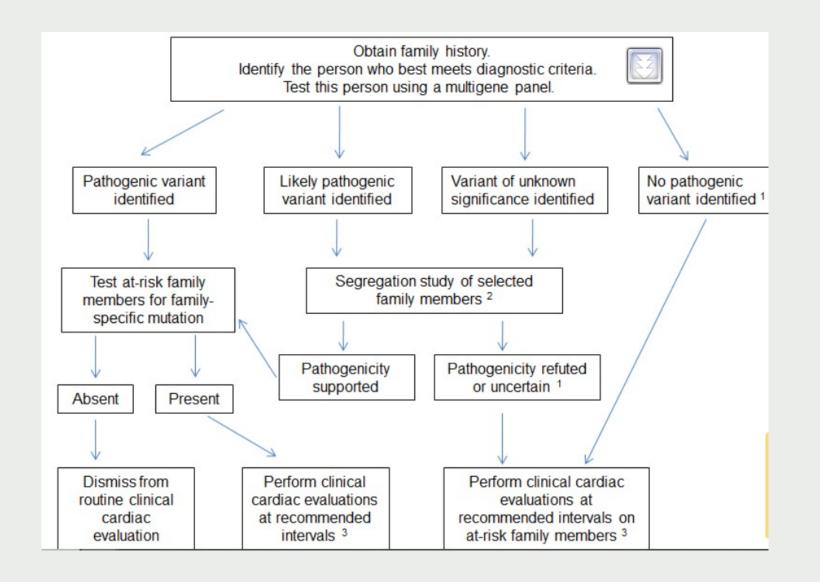
Hypertrophic Cardiomyopathy

Unexplained left ventricular wall thickness with maximal wall thickness > 15 mm in adult

If there is a positive family history of HCM or a pathogenic variant in the family is identified in one of the known Sarcomeric genes, the maximal wall thickness > 13 mm


Manifestation

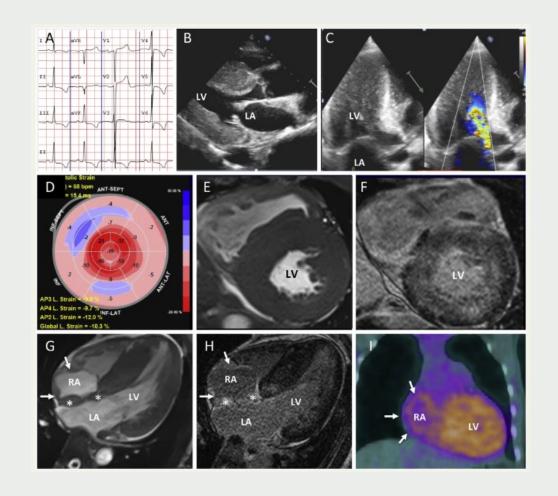

Adolescence onset


Outflow obstruction

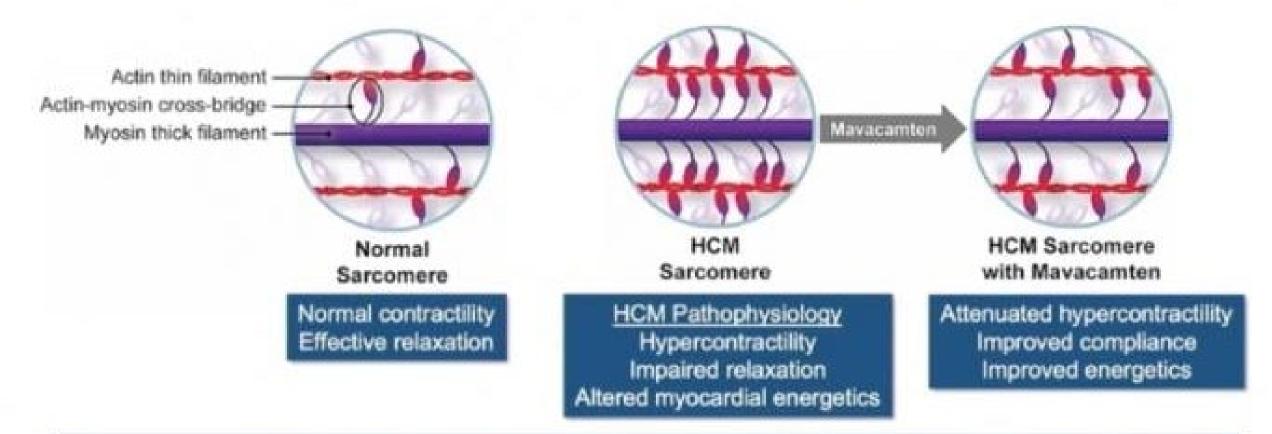
- -1/3 no outflow obstruction
- -1/3 outflow obstruction provoked by maneuver
- -1/3 outflow obstruction at rest
- 60% atrial fibrillation at 60 years old
- 5-10% progress to end stage heart failure
- 6 % in sudden cardiac death, cardiac arrest survivors

Genetic Testing

Benefit of Genetic Testing


Benefits	Limitations
Confirm HCM even in ambiguous cases and before overt hypertrophy	Limited positive predictive value
Rule out non affected cases	In the absence of a known mutation, a negative test doesn't rule out HCM
Prenatal and preimplantation diagnosis	Limited clinical and prognostic contribution
	Test interpretation may be challenging

Genetic Status	Age of Asymptomatic Relative ¹	Risk for Developing HCM	When To Initiate Screening	Repeat EKG & 2D Echo ²
Heterozygous for the familial HCM-related pathogenic variant	Children & adolescents	High ³	At the time HCM is diagnosed in another	Every 1-2 yrs
	Adults	Ingn	family member	Every 3-5 yrs
Not heterozygous for the familial HCM-related pathogenic variant	Children & adolescents	Not at ↑ risk	May be discharged from cardiac	NA
	Adults		surveillance	


Differential Diagnosis (Syndromic)

Internist should know

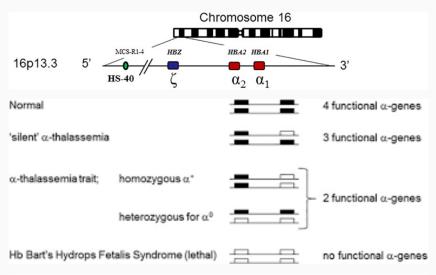
- Fabry Disease
- TTR Amyloidosis
- Noonan Syndrome and RASopathies spectrum disorder

Mavacamten: Mechanism of Action

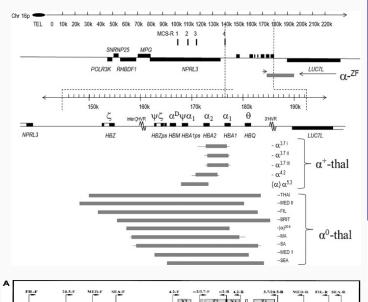
Mavacamten is a targeted inhibitor of cardiac myosin that reduces the number of myosin-actin cross-bridges and decreases contractility

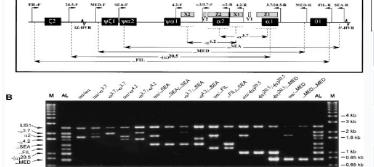
Game Changer? 89,500 USD annual cost

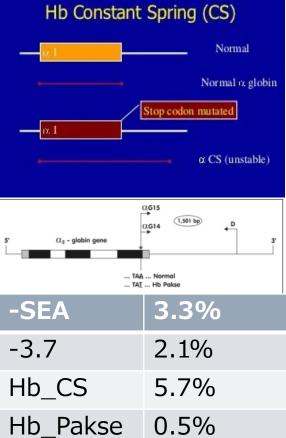
- Will remodeling be different in patients with sarcomeric variants versus those without?
- Will the extent of remodeling be related to the degree of LVOT obstruction?
- Will the favorable structural remodeling noted thus far result in improved outcomes in terms of development of atrial fibrillation and heart failure?
- Will the extent of remodeling be consistent in patients with recent-onset disease compared with patients with long-standing disease?
- Will patients with non-obstructive HCM derive a similar degree of favorable remodeling compared with those with oHCM?
- Will those with mid-cavitary obstruction and related apical aneurysms experience positive or negative cardiac remodeling?
- Could mavacamten, if introduced in children living with HCM, have similar favorable remolding and prevent disease progression and resultant high burden of adverse outcomes observed?²⁴
- Could mavacamten be used as a preventative therapy in genotype-positive phenotype-negative patients

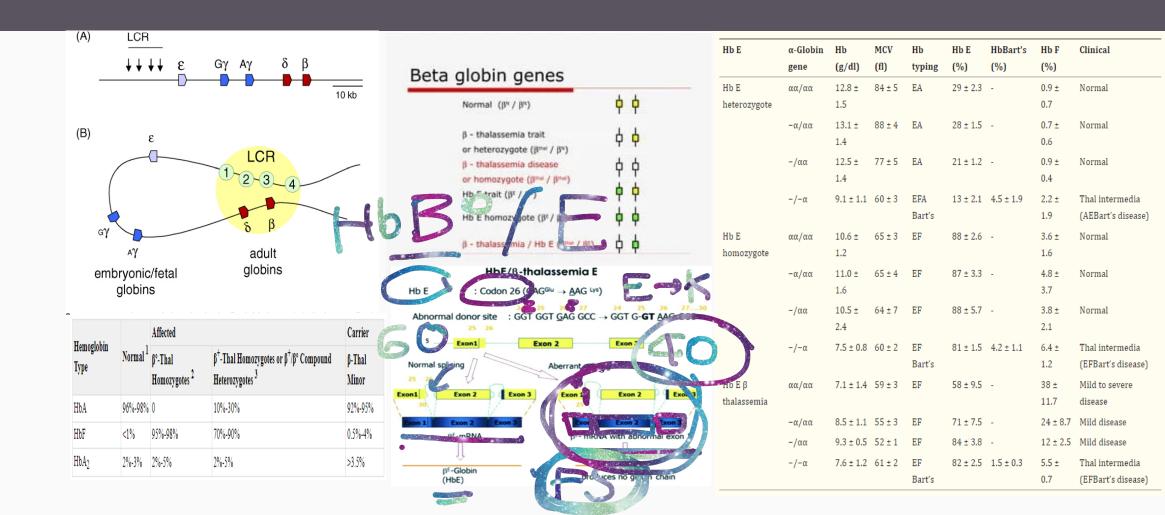

Prevalence

Echocardiographic Study Genetic study (MYBPC3, MYH7, TNNT2) nearly 1/100


1/300




Alpha-Thalassemia


Hemoglobin Type ¹	S. 1	Affected		
Hemoglobin Type	Normal	Hb Bart syndrome ²	HbH disease ³	
HbA	96%-98%	0	60%-90%	
HbF	<1%	0	<1.0%	
Hb Bart	0	85%-90%	2%-5%	
ньн	0	0	0.8%-40%	
HbA2	2%-3%	0	<2.0%	
Hb Portland	0	10%-15%	0	

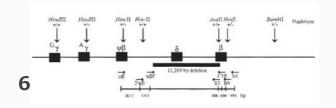
Beta-Thalassemia

Beta globin gene variant

c.79 G>A (p. E27K) (HbE)

c.52A>T (p.K18*) (Beta0-17)

18% (291/1642)


0.8% (13/1642)

c.126-129del (p.F42Lfs*19) (FS41/42)0.7% (11/1642)

c.92+1G>T (IVS1+1)

0.2% (3/1642)

ICS1 +5, FS 71/72

WGS (20%) -78 A-G, IVS2-

β-Thalassemia Mutations in Thailand

	No. of Chromosomes (% frequency)			
MUTATION	β^{Th}/β^{Th}	β^E/β^{Th}	Total	
Frameshift 41/42	11 (28.9)	48 (61.5)	59 (50.9)	
– 28 A-G	9 (23.7)	3 (3.9)	12 (10.3)	
IVS-2 nt 654	6 (15.8)	7 (9.0)	13 (11.2)	
β ⁰ 17	3 (7.9)	9 (11.5)	12 (10.3)	
IVS-1 nt 5	2 (5.3)	4 (5.1)	6 (5.2)	
IVS-1 nt 1	0	2 (2.6)	2 (1.7)	
Frameshift 71/72	0	1 (1.3)	1 (0.8)	
Codon 35 TAC-TAA	0	3 (3.9)	3 (2.6)	
– 86 C-G ^a	1 (2.6)	0	1 (0.8)	
Codon 19 A-Gb	2 (5.3)	0	2 (1.7)	
Frameshift 14/15	0	1 (1.2)	1 (0.8)	
Uncharacterized	4 (10.5)	_0	4 (3.4)	
Total	38	78	116	

* Refers to previously described mutations.

b The A→G mutation in codon 19 was recently reported in the Malay population (Yang et al. 1989).

requencies of Different β -Thalassemia Mutations in Asians

- CTT GAA GIU

	Frequency (%)				
Mutation	Thais*	Chinese ^b $(n = 93)$	Indians ^c (n = 102)	Malaysians ⁴ (n = 41)	
rameshift 41/42	50.9	48.3	11.8	12.2	
- 28 A-G	10.3	7.5	0	0	
VS-2 nt 654	11.2	21.5	0	7.3	
0 17	10.3	9.6	0	2.4	
VS-1 nt 5	5.2	0	22.5	48.8	
VS-1 nt 1	1.7	0	13.7	7.3	
600-bp Deletion	0	0	20.5	0	
Frameshift 8/9	0	0	19.6	0	
30 15	0	0	4.9	0	
Frameshift 71/72	.8	0	0	0	
Codon 19 A-G	1.7	0	0	14.6	
Codon 35 TAC-TAA	2.6	0	0	0	
Frameshift 35	0	0	0	4.8	
Frameshift 16	0	0	1.0	0	
- 88 C-T	0	0	2.0	0	
- 86 C-G	.8	0	0	0	
CAP +1	0	0	2.0	0	
Uncharacterized	3.4	12.9	2.0	2.4	

https://globin.bx.psu.edu/globin/hbvar/

A Database of Human Hemoglobin Variants and Thalassemia mutations

Information about hemoglobin variants (both pathological and nonpathological) and mutations that cause thalassemias

Search database

Other Resources

Summaries of mutation categories	Compound heterozygous phenotype	*NEW Most recent update	? FAQ
FINDbase: for allele frequencies	BX Browser: UCSC Browser mirror with HbVar variants	LOVD: version of HbVar plus other related genes	dbSNP entries associated with HbVar
SNP coordinate converter	Difference in mass chart	NCB Reference sequences: <u>NG_000007.3</u> , <u>NG_000006.1</u>	User counts

About HbVar

Contact us: <hbyar-curators@bio.cse.psu.edu>

Curators

Citing this resource

Giardine B, Borg J, Viennas E, Pavlidis C, Moradkhani K, Joly P, Bartsakoulia M, Riemer C, Miller W, Tzimas G, Wajcman H, Hardison RC, Patrinos GP. <u>Updates of the HbVar database of human hemoglobin variants and thalassemia</u> <u>mutations</u>. Nucleic Acids Res. 2014 Jan;42 (Database issue):D1063-9.

Familial Hypercholesterolemia

Clinical Criteria Study: 1/250

Genetic Study: LDLR c.1056C>A (p.Cys352*) 10/1559,

All PV/LPV 15/1559 -> 1%

Clinical Diagnostic Criteria for FH

$$F+H=FH$$

Possible FH by Simon Broome

SIMON BROOME CRITERIA

T-C > 290 mg/dl or LDL-C > 190 mg/dl in adults OR

T-C > 260 mg/dl or LDL-C > 155 mg/dl in pediatrics

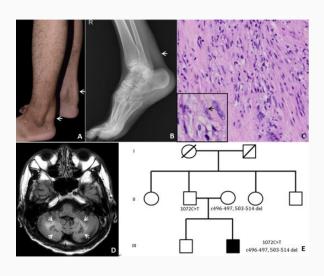
With

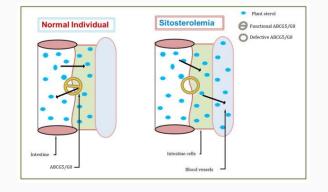
Tendon Xanthomas in the patient or in a FDR or SDR

0 r

DNA-based of LDLR mutation (LOF), APOB (LOF), or PCSK9(GOF)







Differential Diagnosis

Camada	DiffDx Disorder	MOI	DiffDx Disorder	
Gene(s)	Dilibx Disorder	MOI	Similar to FH	Distinguishing from FH
ABCG5 ABCG8	Sitosterolemia	AR	Xanthomas; susceptibility to early-onset CAD. Some persons may present w/↑ plasma cholesterol/LDL-C (often presents in childhood).	Hematologic abnormalities (hemolytic anemia, thrombocytopenia, stomatocytes); xanthomas in childhood (particularly in absence of hyperlipidemia in parents); poor response to statins
	p.Leu167del-related AD hypercholesterolemia ¹	AD	Persons may present w/↑ LDL & ↑ risk of CAD.	Splenomegaly, sea-blue histiocytosis, thrombocytopenia, & † triglycerides reported in some p.Leu167del heterozygotes
APOE	APOE Hyperlipoproteinemia type III (familial dysbetalipoproteinemia [FD]) (OMIM 617347) Wariants are at xanthomas (m cutaneous & to premature CA APOE genoty; homozygosity (p.Arg176Cys APOE variant)	Persons w/predisposing APOE variants are at risk of developing xanthomas (more commonly cutaneous & tuberous) & premature CAD. Most common APOE genotype assoc w/FD: homozygosity for E2 allele (p.Arg176Cys); however, >30 APOE variants have been assoc w/FD. ²	Persons w/FD are at risk of developing ↑ triglycerides.	
CYP27A1	Cerebrotendinous xanthomatosis (CTX)	AR	Xanthomas	Dementia, ataxia, & cataracts; normal LDL-C
LIPA	Lysosomal acid lipase deficiency	AR	† LDL-C; risk of CAD	 In infantile onset (Wolman disease): ↑ triglycerides, malnutrition, hepatosplenomegaly, liver disease, adrenal cortical insufficiency In adult onset (cholesterolester storage disease): hepatosplenomegaly &/or ↑ liver enzymes, ↑ triglycerides

Dutch Lipid Clinic (>8)

```
FH-FDR with tx, or ac (2), FDF with known premature CAD, CVD, PVD (1)
```

CH- premature CAD (2), premature CVD or PVD (1)

PE - tendinous xanthoma (6), arcus cornealis < 45 years (4)

CL - LDL-C > 330(8), > 250(5), > 190(3), > 155(1)

DNA - LDLR, apoB, PCSK9

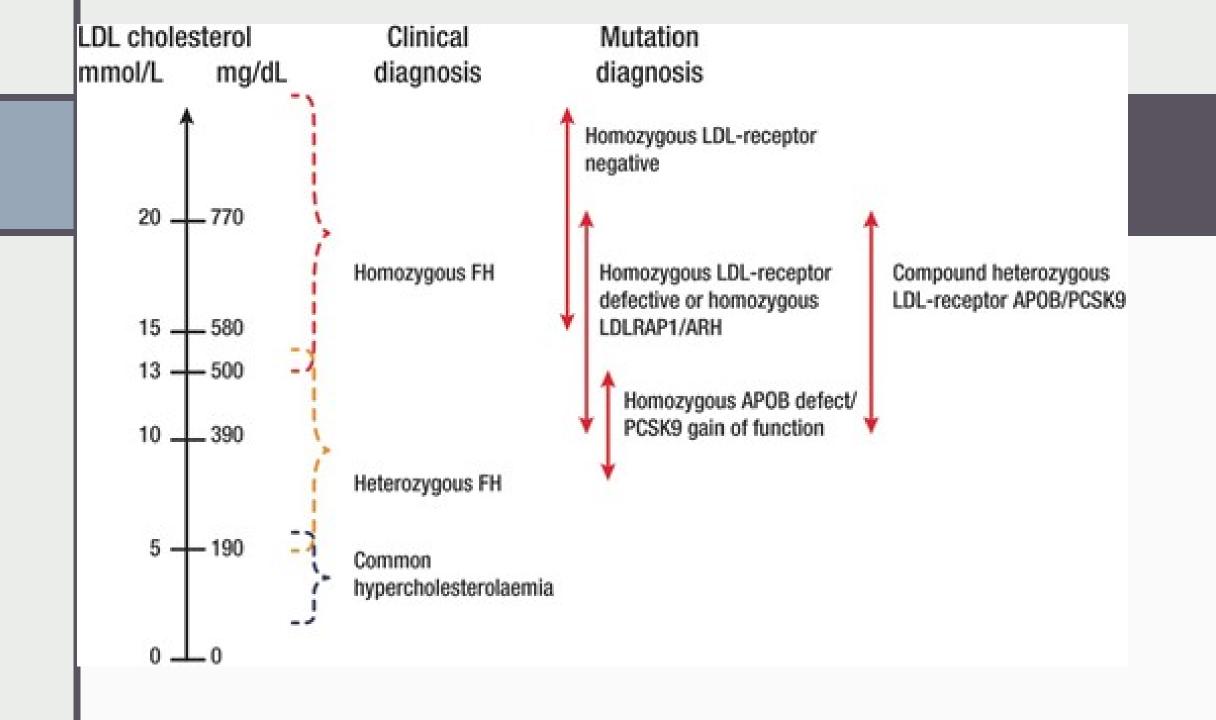
MEDPED

	Total Cholesterol (LDL-C) concentrations, mg/dL						
Age	First-degree relative	Second-degree relative	Third-degree relative	General population			
<18	220 (155)	230 (165)	240 (170)	270 (200)			
20	240 (170)	250 (180)	260 (185)	290 (220)			
30	270 (190)	280 (200)	290 (210)	340 (240)			
40 +	290 (205)	300 (215)	310 (225)	360 (260)			

Homozygous Familial Hypercholesterolemia

 ${\it Genetic confirmation of two mutant alleles at the \it LDLR, APOB, PCSK9, or \it LDLRAP1 gene locus}$

OR

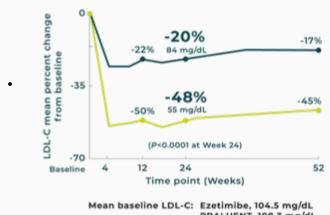

An untreated LDL-C >13 mmol/L (500 mg/dL) or treated LDL-C ≥8 mmol/L (300 mg/dL)* together with either:

o Cutaneous or tendon xanthoma before age 10 years

or

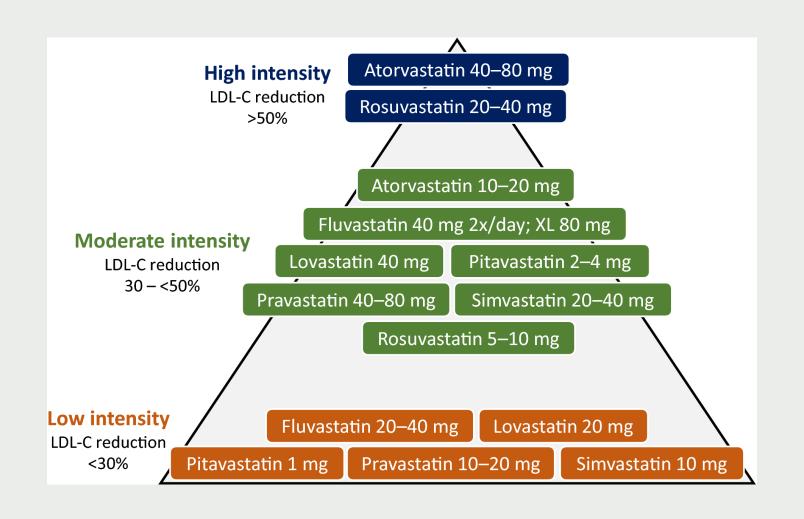
o Untreated elevated LDL-C levels consistent with heterozygous FH in both parents

* These LDL-C levels are only indicative, and lower levels, especially in children or in treated patients, do not exclude HoFH



Medication Treatments

	Class	Primary (1 ^O) and Secondary (2 ^O) Mechanism of Action	LDL-Lowering Response
(Statins	↑ LDLR activity (1 ^O) Inhibition of cholesterol biosynthesis through HMG-CoA reductase	50% 1, 2
(Cholesterol absorption inhibitors (ezetimibe)	↓ cholesterol absorption (1 ^O) ↑ LDLR activity (2 ^O)	15% 1, 3
	MTP inhibitor (lomitapide) ⁴ ↓ microsomal triglyceride transfer protein activity (1 ^O) Inhibition of LDL production (2 ^O)		50% 5
	PCSK9 inhibitors (alirocumab, evolocumab, inclisiran)	↓ LDLR degradation	50% 6
5	Bile acid sequestrants (cholestyramine, colesevelam)	↓ bile acid reabsorption (1 ^O) ↑ LDLR activity (2 ^O)	15% ^{1, 3}
	Stanol esters	↓ cholesterol absorption (1 ^O) ↑ LDLR activity (2 ^O)	10% 1, 3
	Bempedoic acid	↑ LDLR activity (1 ^O) Inhibition of cholesterol biosynthesis by inhibiting ATP-citrate lyase	15%
	Evinacumab ⁴	Inhibition of ANGPTL3, which results in ↑ lipoprotein lipase activity ↓ VLDL	50%

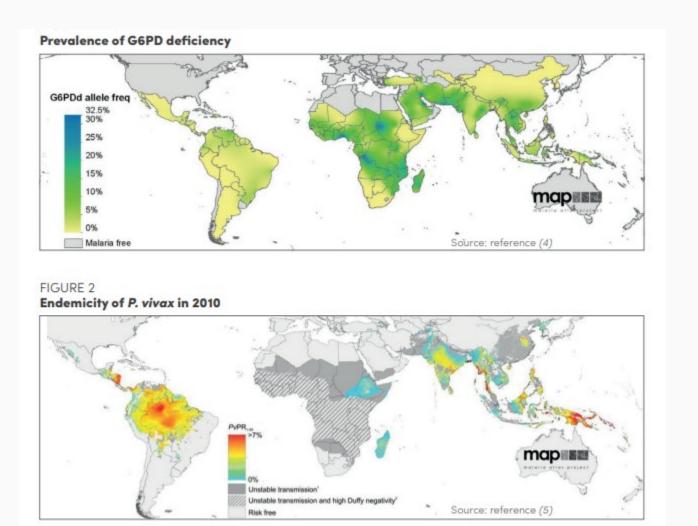


75mg SC q 2 weeks 8000 THB/dose 192,000 THB/year

PRALUENT, 108.3 mg/dL

PRALUENT 75 mg/150 mg Ezetimibe 10 mg Q2W + statin (n=479) QD + statin (n=241)

>90% of FH remain undiagnosed

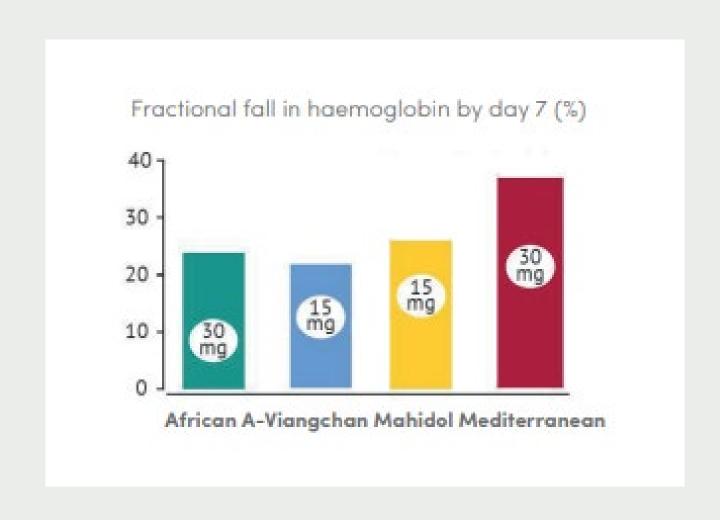


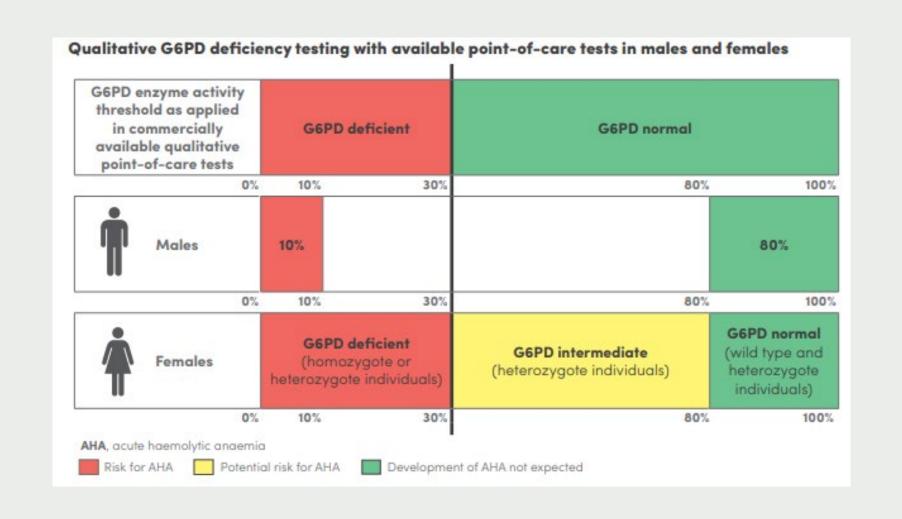
Glucose 6 Phosphate Dehydrogenase Deficiency

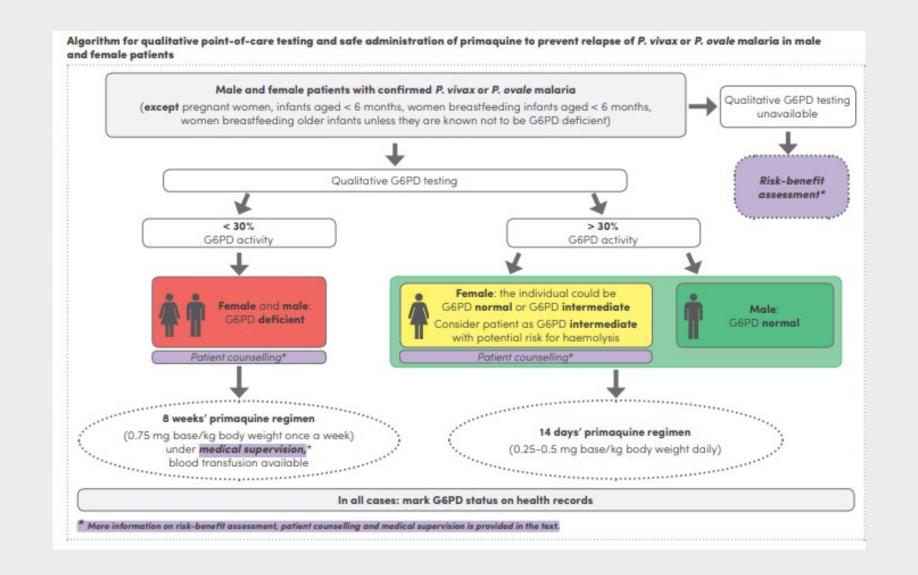
From genetic study:

- -10% of Thai men has G6PD deficiency or about 3 million men
- 20% of Thai women are the carrier (that can be symptomatic) of pathogenic variant in G6PD or about 1.5 million women
- 127/1642 in total
- -> 10,000 boy born with G6PD deficiency each year
- -> 20% develop neonatal jaundice required phototherapy (3xrisk, F 2X risk)
- -> > 2,000 boy required phototherapy as a result of G6PD deficiency

G6PD deficiency vs P. vivax


Drug induced hemolytic anemia


Acute hemolysis can occur in a G6PD deficient person who is exposed to antimalarials from the 8-aminoquinoline family.


Primaquine remains the only medicine available against chronic infection and relapsed caused by P. vivax and P. ovale and the tranmission of P. falciparum

10,000 Cases of malaria infection annually in Thailand, 8000 of these are P vivax cases of these > 500 cases can develop severe hemolysis required blood transfusion

This is in line with the policy adopted by the government of Lao PDR to prescribe primaquine only after the G6PD status of the patient is identified <- WHO Recommendation 2014

Other drug with definite association

Primaquine

Sulfonamides

Dapsone

Co-trimoxazole

Napthalene

Drugs with possible association

Chloroquine

Glibenclamide

Aspirin

Ciprofloxacin

Vitamin K and Vitamin C

Infection-induced hemolytic anemia

Hepatitis A

Hepatitis B

Cytomegalovirus

Dengue virus

Typhoid fever

Pneumonia

Favism

Raw > Dried or Frozen

Maternal consumption -> breast feeding

24 hours after eat

Hemoglobinuria severe > drug or infection induced

Chronic non spherocytic hemolytic anemia (CNSHA)

G6PD Bangkok (825G>C)

G6PD Bangkok Noi (1502T>G)

Can be co-incidence with other common red cell disorders:

Thalassemia, Hereditary Spherocytosis

INDICATION

Acute hemolysis after drugs, infections or fava bean ingestion Family history of neonatal jaundice, splenomegaly or gall stone Personal history of severe neonatal hyperbilirubinemia

Malaria endemic area before administer antimalarial drug - primaquine

When to test

Carrier screening

Newborn screening *******

At risk family screening

Symptomatic screening

G6PD Variants

Vientiane c.961 G> A (p.Val321Met) 55/1642

Mahidol c.577G>A (p. Gly193 Ser) 33/1642

All 127/1642

Top Five Genetic Diseases

- 1. G6PD deficiency
- 2. Familial Hypercholesterolemia
- 3. Thalassemia
- 4. Hypertrophic Cardiomyopathy
- 5. Hereditary Breast-Ovarian Cancer Syndrome and Lynch syndrome

Case 1

Proband – Asymptomatic female 38 yo – no children

Family history of Cancer

Mom: 58 yo - endometrium carcinoma

Younger brother 35 yo - dx stomach carcinoma 30 yo

Second opinion, self-referral: BRCA test was recommended, Prophylactic mastectomy

?

Case 2

Proband: male 36 yo – asymptomatic, son 7 yo, daughter 4 yo

Family history – father died 48 yo from CA stomach, younger sister died 28 yo from CA ovary

Self referral- Direct to consumer genetic testing (Lazada - *****) - BRCA1 positive - application,

Wellness result *****

?

Case 3

Oncologist consult a case with advanced breast cancer with Family history of breast cancer (young onset, bilateral – older sister)

Genetic testing (previous): VUS BRCA1

Q: any further genetic test, or interpretation of previous result

- Patient eligible for PARP inhibitor?
-
- BRCA1 variant is reclassified to likely pathogenic -> she is eligible for PARPi
- Older sister -> recalled for genetic testing -> daughter 35 yo -> single
- Multiple gene panel testing is chosen
- Pathogenic BRCA1 variant different one